Wertpapieranalyse
In Klausuren wird zudem häufig von dir verlangt, dass du die Wahrscheinlichkeit für eine Rendite bestimmst. Dazu benötigen wir ebenfalls, wie später bei den Sigma-Regeln, den Erwartungswert und die Varianz bzw. Standardabweichung des Portfolios.
Inhaltsübersicht
Wahrscheinlichkeiten von Portfoliorenditen
Die Wahrscheinlichkeit einer Rendite wird mit dargestellt. P steht hier für die Wahrscheinlichkeit, dass die Rendite unseres Portfolios größer als der Wert X ist und das X beschreibt wiederum den Wert, den wir überschreiten wollen.
Allerdings können wir nicht direkt einen Wert bestimmen, der größer als X sein soll. Dieses Problem lässt sich allerdings leicht beheben. Eine Wahrscheinlichkeit kann immer maximal bei 100 Prozent liegen – also bei 1. Wir können somit einfach die Gegenwahrscheinlichkeit bestimmen und von 1 abziehen. Die Gegenwahrscheinlichkeit ist in diesem Fall . Diesen Term nennen wir auch .
Um nun die Wahrscheinlichkeit ausrechnen zu können, müssen wir dann die Verteilungsfunktion der Standardnormalverteilung für zur Hand nehmen. Diese wird dir in der Klausur, falls nötig, immer zu Verfügung gestellt.
Drei Sigma-Regeln Erklärung
Nachdem wir nun mit den einzelnen Parametern etwas vertrauter sind, beschäftigen wir uns jetzt mit den Sigma-Regeln. Im Folgenden gehen wir davon aus, dass du ein Wertpapier besitzt. Um nun herauszufinden, welche Renditen mit welcher Wahrscheinlichkeit nicht über oder unterschritten werden, verwenden wir die Sigma-Regeln.
Die Sigma-Regeln stellen ein häufig verwendetes Tool dar, wenn es darum geht die oben aufgeführte Problematik zu lösen. Das Sigma steht, wie bereits erwähnt, für die Standardabweichung. Es gibt die Sigma-Regeln in drei Ausprägungen: Die Ein-Sigma-Regel, die Zwei-Sigma-Regel und die Drei-Sigma-Regel. Für die Anwendung der drei Sigma-Regeln brauchen wir immer den Erwartungswert und die Volatilität eines Portfolios oder wir müssen anhand der gegebenen Daten in der Lage sein die beiden zu bestimmen.
Sigma-Regeln Aufgaben mit Lösungen – Die Ein-Sigma-Regel
Zuerst beschäftigen wir uns mit der Ein-Sigma-Regel und gehen von folgendem Beispiel aus. Der Erwartungswert beträgt 0,0987 und die Volatilität – also Sigma – ist gleich 0,31416. Mit der Ein-Sigma Regel kannst du den Bereich bestimmen, in dem deine Rendite mit einer Wahrscheinlichkeit von ungefähr liegt. Als Aufgabenstellung sieht das dann meistens so aus: Berechne die Renditen, die in circa der Fälle nicht unterschritten und in circa der Fälle nicht überschritten werden – also die Rendite, die in circa der Fälle eintreten.
Du berechnest einfach als oberen Wert und als unteren Wert. Das machst du, indem du vom Erwartungswert einmal die Volatilität abziehst und sie einmal dazuzählst. Deine Rendite liegt also mit einer Wahrscheinlichkeit von circa zwischen -21,55 Prozent und 41,29 Prozent.
Falls dir noch nicht ganz klar ist, warum das so ist, stell dir einfach die Funktion der Normalverteilung vor. Dein Erwartungswert liegt in der Mitte der Verteilung. Du ziehst davon jetzt einmal die Standardabweichung ab und einmal addierst du sie dazu. In deiner Funktion bilden sich somit drei Bereiche. Innerhalb der zwei Drittel, und am Rande je ein Sechstel.
Sigma-Regeln Aufgaben mit Lösungen – weitere Sigma-Regeln
Häufig ist jedoch danach gefragt, das Risiko für eine Fehleinschätzung zu minimieren. Da reicht es natürlich nicht, nur den Bereich anzugeben, der zu zwei Drittel nicht über- oder unterschritten wird. Deshalb gibt es noch die Zwei-Sigma-Regel und Drei-Sigma-Regel. Dabei subtrahierst und addierst du einfach nicht nur einmal, sondern eben zwei oder drei Mal das Sigma.
Wenn du die Zwei-Sigma-Regel anwendest, sind deine Ergebnisse die Renditewerte, die zu 95 Prozent nicht über- oder unterschritten werden und bei der Drei-Sigma-Regel sogar die Werte, die zu 99 Prozent nicht überschritten werden. Die Werte, die du anhand der Sigma-Regeln ermittelst, helfen dir also jeweils die Grenzwerte zu finden, die mit der jeweiligen Wahrscheinlichkeit nicht über- bzw. unterschritten werden. Die Prozentwerte sind also immer gleich. Wenn du jetzt wissen willst, welchen Betrag du zu verlieren riskierst, kein Problem. In unserem Video zum Value at Risk wird nämlich genau das erklärt. So, jetzt kannst du auch schon nachrechnen, welche Grenzwerte die Sigma-Regel dir für dein Wertpapier prognostiziert.