Video
Quiz

Teste dein Wissen zum Thema Fourierreihen!

Fourierreihen

Die Fourierreihen bereiten dir noch Probleme? Im Folgenden zeigen wir dir, wie du Fourierreihen bildest und erklären dir an einem einfachen Beispiel wie du sie anwendest.

Quiz zum Thema Fourierreihen
5 Fragen beantworten
Inhaltsübersicht

Definition

Die Fourierreihen sind definiert als

  1. Punkt a
  2. Punkt b
  3. Punkt c

Erklärung Fourierreihen: Trigonometrische Reihe

Als Erstes schauen wir uns die trigonometrische Reihe an. Wie du im Graph siehst, wiederholt sich ihr Verlauf; sie ist periodisch.

Fourierreihen: trigonometrische Reihe
direkt ins Video springen
Fourierreihen: trigonometrische Reihe

Sie lässt sich als Funktionenreihe schreiben, die sich aus Sinus- und Kosinusfunktionen mit Koeffizienten a_n  und b_n zusammensetzt.

Fourierreihenentwicklung: Orthogonalitätsrelationen

Um nun die Koeffizienten so zu bestimmen, dass die trigonometrische Reihe mit einer beliebigen periodischen Funktion übereinstimmt, brauchen wir die sogenannten Orthogonalitätsrelationen für trigonometrische Funktionen.

Fourierreihen: Orthogonalitätsrelationen
direkt ins Video springen
Fourierreihen: Orthogonalitätsrelationen

Das sind einfach nur drei Integrale über Produkte aus Kosinus- und Sinusfunktionen. Die Berechnung ersparen wir uns an dieser Stelle. Die Ergebnisse sind entweder null, 2\pi oder \pi, je nachdem ob n und m übereinstimmen oder nicht.

Quiz zum Thema Fourierreihen
5 Fragen beantworten

Fourierreihe – zweites Beispiel

Machen wir noch ein zweites Beispiel. Hast du dich schon immer gefragt, wie man trigonometrische Formeln wie \cos^2{x}=\frac{1}{2}\left(1+\cos{2x}\right) eigentlich beweisen kann? Mit Fourierreihen geht das und wir zeigen dir wie.

Zunächst definieren wir uns unsere Funktion f\left(x\right)=\cos^2{x}. Es ist eine gerade Funktion, somit fallen alle Koeffizienten b_n weg. a_n bestimmst du so:

Fourierreihe Beispiel
direkt ins Video springen
Bestimmung von an und a0

Das Integral ist etwas kompliziert zu berechnen und soll hier nicht im Fokus stehen. Das Ergebnis ist Null für alle n\neq2 und nur für n=2 ergibt sich der Wert \frac{1}{2}. Du musst nur noch a_0 bestimmen. Dazu wollen wir dir einen Trick zeigen. Sieh dir mal die Funktion Cosinus Quadrat auf dem Intervall 2\pi genau an.

Sie muss in Summe mit dem Sinus Quadrat immer 1 ergeben, denn es gilt \sin^2{x}+\cos^2{x}=1.

Außerdem wissen wir, dass \int_{-\pi}^{\pi}\cos^2{x}dx=\int_{-\pi}^{\pi}\sin^2{x}dx entspricht, denn die Funktionen sind 2\pi-periodisch und nur entlang der x-Achse zueinander verschoben. Daraus können wir folgern, dass das Integral \int_{-\pi}^{\pi}{\cos^2{x}dx} genau den Wert der Hälfte der rechteckigen Fläche annimmt.

\frac{a_0}{2}=\frac{1}{2\pi}\int_{-\pi}^{\pi}{\cos^2{x\ } dx}=\frac{1}{2\pi}\ast \frac{1}{2}\ast 2\pi\ast 1=\frac{1}{2}

Diese ist 2\pi lang und eins hoch. Es ergibt sich a_0=\frac{1}{2}.

Zum Schluss kannst du deine Ergebnisse zur Fourierreihe zusammensetzen:

Ff\left(x\right)=\frac{1}{2}+\frac{1}{2}\cos{2x}

Hallo, leider nutzt du einen AdBlocker.

Auf Studyflix bieten wir dir kostenlos hochwertige Bildung an. Dies können wir nur durch die Unterstützung unserer Werbepartner tun.

Schalte bitte deinen Adblocker für Studyflix aus oder füge uns zu deinen Ausnahmen hinzu. Das tut dir nicht weh und hilft uns weiter.

Danke!
Dein Studyflix-Team

Wenn du nicht weißt, wie du deinen Adblocker deaktivierst oder Studyflix zu den Ausnahmen hinzufügst, findest du hier eine kurze Anleitung. Bitte .